Rezistor
Rezistor je pasivní elektrotechnická součástka projevující se v elektrickém obvodu v ideálním případě jedinou vlastností - elektrickým odporem. Důvodem pro zařazení rezistoru do obvodu je obvykle snížení velikosti elektrického proudu nebo získání určitého úbytku napětí. Rezistory se také mohou používat jako topné články, testovací zátěže pro generátory apod. Rezistory rozdělujeme na pevné a proměnné. Pevné rezistory mají pevně danou hodnotu odporu, která se mírně mění pouze v závislosti na teplotě, procházejícím napětí a životnosti rezistoru. U proměnných rezistorů můžeme měnit jeho fyzikální veličinu (odpor) v určitém rozsahu, ty se používají k plynulému upravení činnosti dalších částí obvodu - potenciometry nebo odporové trimry. (např. nastavení hlasitosti, stmívání svítidel, nastavení teploty apod.), nebo jako senzory teploty (termistory), napětí (varistory), světla (fotorezistory), síly nebo chemických procesů.
Rezistory jsou v elektronice všudypřítomnou součástkou. Vyrábí se pomocí mnoha rozdílných výrobních postupů a mají mnoho rozdílných vlastností, kterých se může využívat. Mimo jiné jsou implementovány i v integrovaných obvodech.
Tato součástka bývá často nesprávně označována jako odpor, což ale může vést k nejednoznačnostem kvůli možné záměně se stejnojmennou veličinou (tj. s elektrickým odporem). Pro odlišení se začal používat pojem odporník (dnes velmi zastaralý) a později rezistor. Dnes se pojem odporník používá pro název elektrického přístroje v silové a výkonové elektrotechnice (např. "rozjezdový odporník" u vozidel elektrické trakce), obvykle se jedná o konstrukční celky poměrně velkých ztrátových výkonů (až megawatty).

Značka a notace
Schematická značka rezistoru není celosvětově sjednocena. Dnes se používají dva standardy značení a to IEC 60617 a ANSI Y32/ IEEE 315 (používá se hlavně v USA a Japonsku). Dříve se používaly také standardy DIN 40900 (v Německu) a AS 1102
V americké notaci se píše hodnota odporu se znakem ohmu (Ω) na konci. Také se používají předpony, takže 1 000 Ω se zapisuje jako 1 kΩ, atd. Všimněte si, že desetinná čárka se zde píše jako tečka, nikoliv čárka. U ohmů se používají standardizované SI předpony. V tabulce jsou předpony, které se většinou používají (normálně nikdy nenarazíte na odpor větší než v TΩ a menší než v nΩ, a třeba deciohmy se nepoužívají).
V Evropě se používá standard IEC 60062. Jeho předchůdce je britský standard BS 1852. Tento standard určuje nejenom způsob, jakým zapisovat hodnoty rezistorů. Určuje i zápis jejich tolerance. Místo desetinné čárky se zde používá písmeno, které zároveň určuje násobek čísla. Například 6k8 je 6.8 kΩ (6 800 Ω).
Konstrukce
Rezistory mohou být konstruovány různým způsobem:
- Drátové - nejstarší typ, jehož základem je vodič s požadovanou hodnotou odporu, které lze dosáhnout použitím látky s určitou rezistivitou, určitou délkou a průřezem vodiče. Kvůli úspoře místa se dlouhý drát obvykle navíjí kolem izolačního tělíska, zpravidla keramického. Touto technologií se již vyrábí zanedbatelné procento rezistorů, zpravidla malé hodnoty a velké výkony.
- Vrstvové - Vyrábí se nanesením vodivé vrstvy na izolační tělísko a vyfrézováním drážky pro zvýšení odporu. Tato technologie je v současnosti nejpoužívanější. Dále je dělíme dle použité vodivé hmoty:
- Uhlíkové - Nejstarší typ. Vrstva je uhlíková. Snadno se dosahuje vysokých hodnot, špatně nízkých. Vysoký šum, špatná dlouhodobá stabilita, nízká pracovní teplota. Dnes se obvykle považují za zastaralé.
- Metalizované - Vrstva je vytvořena vakuovým napařením kovu. Mnohem lepší parametry než uhlíkové.
- Metaloxidové - Vrstva je vytvořena z oxidu kovu. Vyšší stabilita, tepelná odolnost a impulzní zatížitelnost než metalizované. Možnost dosažení velmi vysokých hodnot (desítky GΩ v pouzdře 0805).
- Hmotové - Celé těleso rezistoru je z odporového materiálu. Nejvyšší impulzní zatížitelnost. Vysoká cena, speciální aplikace, např. marxův generátor. Speciálním případem hmotových rezistorů jsou vodní. Mezi hmotové rezistory patří i termistory a varistory.
Pro velké výkony existují speciální typy rezistorů, které mají často velké a účinné chladiče, aby dokázaly velký tepelný výkon odvést do okolního prostředí. Takové rezistory se používají například u elektrických lokomotiv při brzdění vlaku. Jeho kinetická energie se tak promění v teplo.
Jiným příkladem jsou tzv. vodní odpory, které jsou k vidění například u kolotočů, kterým zajišťují plynulý rozjezd. U těchto rezistorů proud prochází vodou s přídavkem malého množství kyseliny nebo soli. Hodnota odporu se mění velikostí zasunutí kovových desek do lázně.
Průřez vodiče je závislý na předpokládaném zatížení, aby teplo vznikající v rezistoru průchodem elektrického proudu nezpůsobilo roztavení vodiče. Za materiál rezistoru je vhodné vzít látku s nízkým teplotním součinitelem odporu, aby odpor rezistoru nezáležel příliš na teplotě (manganin, konstantan). U některých typů odporů se ale naopak jejich teplotní závislosti využívá (tzv. termistory).

